Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Genes (Basel) ; 14(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36981010

RESUMO

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Haploinsufficiency in SON may affect multiple genes, including those involved in the development and metabolism of multiple organs. Considering the broad spectrum of SON functions, it is to be expected that pathogenic variants in this gene can cause a wide spectrum of clinical symptoms. We present an additional ZTTK syndrome case due to a de novo heterozygous variant in the SON gene (c.5751_5754delAGTT). The clinical manifestations of our patient were similar to those present in previously reported cases; however, the diagnosis of ZTTK syndrome was delayed for a long time and was carried out during the diagnostic work-up of significant chronic liver disease (CLD). CLD has not yet been reported in any series; therefore, our report provides new information on this rare condition and suggests the expansion of the ZTTK syndrome phenotype, including possible liver involvement. Correspondingly, we recommend screening patients with SON variants specifically for liver involvement from the first years of life. Once the CLD has been diagnosed, an appropriate follow-up is mandatory, especially considering the role of SON as an emerging player in cancer development. Further studies are needed to investigate the role of SON haploinsufficiency as a downregulator of essential genes, thus potentially impairing the normal development and/or functions of multiple organs.


Assuntos
Oftalmopatias , Deficiência Intelectual , Humanos , Deficiência Intelectual/patologia , Fenótipo , Síndrome , Fígado/patologia
2.
Front Oncol ; 12: 1026232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505841

RESUMO

Liver transplantation (LT) is the standard of care for many liver conditions, such as end-stage liver diseases, inherited metabolic disorders, and primary liver malignancies. In the latter group, indications of LT for hepatoblastoma and hepatocellular carcinoma evolved and are currently available for many non-resectable cases. However, selection criteria apply, as the absence of active metastases. Evidence of good long-term outcomes has validated the LT approach for managing these malignancies in the context of specialist and multidisciplinary approach. Nevertheless, LT's role in treating primary vascular tumours of the liver in children, both benign and malignant, remains somewhat controversial. The rarity of the different diseases and the heterogeneity of pathological definitions contribute to the controversy and make evaluating the benefit/risk ratio and outcomes quite difficult. In this narrative review, we give an overview of primary vascular tumours of the liver in children, the possible indications and the outcomes of LT.

3.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077394

RESUMO

Seventeen out of 764 liver biopsies from transplanted (Tx) livers in children showed glycogen-ground glass (GGG) hepatocytic inclusions. The inclusions were not present in pre-Tx or in the explanted or donor's liver. Under the electron microscope (EM), the stored material within the cytosol appeared as non-membrane-bound aggregates of electron-lucent globoid or fibrillar granules, previously described as abnormally structured glycogen and identified as Polyglucosan bodies (PB). The appearance of GGG in our children was analogous to that of PB-GGG occurring in a number of congenital diseases due to gene mutations such as Lafora's d., Andersen's d., Adult Polyglucosan Body Disease and glycogenin deficiency. The same type of GGG was previously reported in the liver of patients undergoing transplants, immunosuppressive or antiblastic treatment. To explore the potential mechanism of GGG formation, we examined whether the drugs after whose treatment this phenomenon was observed could have a role. By carrying out molecular docking, we found that such drugs somehow present a high binding affinity for the active region of glycogenin, implicating that they can inactivate the protein, thus preventing its interaction with glycogen synthase (GS), as well as the maturation of the nascent glycogen towards gamma, beta or alfa glycogen granules. We could also demonstrate that PG inclusions consist of a complex of PAS positive material (glycogen) and glycogen-associated proteins, i.e., glicogenin-1 and -2 and ubiquitin. These features appear to be analogous to congenital GGG, suggesting that, in both cases, they result from the simultaneous dysregulation of glycogen synthesis and degradation. Drug-induced GGG appear to be toxic to the cell, despite their reversibility.


Assuntos
Transplante de Fígado , Criança , Glucanos/metabolismo , Glicogênio/metabolismo , Humanos , Simulação de Acoplamento Molecular
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830348

RESUMO

Dysfunction of cellular homeostasis can lead to misfolding of proteins thus acquiring conformations prone to polymerization into pathological aggregates. This process is associated with several disorders, including neurodegenerative diseases, such as Parkinson's disease (PD), and endoplasmic reticulum storage disorders (ERSDs), like alpha-1-antitrypsin deficiency (AATD) and hereditary hypofibrinogenemia with hepatic storage (HHHS). Given the shared pathophysiological mechanisms involved in such conditions, it is necessary to deepen our understanding of the basic principles of misfolding and aggregation akin to these diseases which, although heterogeneous in symptomatology, present similarities that could lead to potential mutual treatments. Here, we review: (i) the pathological bases leading to misfolding and aggregation of proteins involved in PD, AATD, and HHHS: alpha-synuclein, alpha-1-antitrypsin, and fibrinogen, respectively, (ii) the evidence linking each protein aggregation to the stress mechanisms occurring in the endoplasmic reticulum (ER) of each pathology, (iii) a comparison of the mechanisms related to dysfunction of proteostasis and regulation of homeostasis between the diseases (such as the unfolded protein response and/or autophagy), (iv) and clinical perspectives regarding possible common treatments focused on improving the defensive responses to protein aggregation for diseases as different as PD, and ERSDs.


Assuntos
Afibrinogenemia/genética , Fibrinogênio/química , Doença de Parkinson/genética , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , alfa-Sinucleína/química , Afibrinogenemia/tratamento farmacológico , Afibrinogenemia/metabolismo , Afibrinogenemia/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Coagulantes/uso terapêutico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fibrinogênio/genética , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Inibidores de Proteases/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202771

RESUMO

In this article, we review the biological and clinical implication of the Recruitment-Secretory Block ("R-SB") phenomenon. The phenomenon refers to the reaction of the liver with regard to protein secretion in conditions of clinical stimulation. Our basic knowledge of the process is due to the experimental work in animal models. Under basal conditions, the protein synthesis is mainly carried out by periportal (zone 1) hepatocytes that are considered the "professional" synthesizing protein cells. Under stimulation, midlobular and centrolobular (zones 2 and 3) hepatocytes, are progressively recruited according to lobular gradients and contribute to the increase of synthesis and secretion. The block of secretion, operated by exogenous agents, causes intracellular retention of all secretory proteins. The Pi MZ phenotype of Alpha-1-antitrypsin deficiency (AATD) has turned out to be the key for in vivo studies of the reaction of the liver, as synthesis and block of secretion are concomitant. Indeed, the M fraction of AAT is stimulated for synthesis and regularly exported while the Z fraction is mostly retained within the cell. For that reason, the phenomenon has been designated "Recruitment-Secretory Block" ("R-SB"). The "R-SB" phenomenon explains why: (a) the MZ individuals can correct the serum deficiency; (b) the resulting immonohistochemical and electron microscopic (EM) patterns are very peculiar and specific for the diagnosis of the Z mutation in tissue sections in the absence of genotyping; (c) the term carrier is no longer applicable for the heterozygous condition as all Pi MZ individuals undergo storage and the storage predisposes to liver damage. The storage represents the true elementary lesion and consequently reflects the phenotype-genotype correlation; (d) the site and function of the extrahepatic AAT and the relationship between intra and extracellular AAT; (e) last but not least, the concept of Endoplasmic Reticulum Storage Disease (ERSD) and of a new disease, hereditary hypofibrinogenemia with hepatic storage (HHHS). In the light of the emerging phenomenon, described in vitro, namely that M and Z AAT can form heteropolymers within hepatocytes as well as in circulation, we have reviewed the whole clinical and experimental material collected during forty years, in order to evaluate to what extent the polymerization phenomenon occurs in vivo. The paper summarizes similarities and differences between AAT and Fibrinogen as well as between the related diseases, AATD and HHHS. Indeed, fibrinogen gamma chain mutations undergo an aggregation process within the RER of hepatocytes similar to AATD. In addition, this work has clarified the intriguing phenomenon underlying a new syndrome, hereditary hypofibrinogenemia and hypo-APO-B-lipoproteinemia with hepatic storage of fibrinogen and APO-B lipoproteins. It is hoped that these studies could contribute to future research and select strategies aimed to simultaneously correct the hepatocytic storage, thus preventing the liver damage and the plasma deficiency of the two proteins.


Assuntos
Suscetibilidade a Doenças , Retículo Endoplasmático/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Redes e Vias Metabólicas , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Transporte Proteico , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo
6.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071368

RESUMO

Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).


Assuntos
Afibrinogenemia/metabolismo , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , Afibrinogenemia/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/ultraestrutura , Fígado/citologia , Microscopia Eletrônica de Transmissão , Mutação , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética
7.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809321

RESUMO

The revolutionary evolution in science and technology over the last few decades has made it possible to face more adequately three main challenges of modern medicine: changes in old diseases, the appearance of new diseases, and diseases that are unknown (mostly genetic), despite research efforts. In this paper we review the road travelled by pathologists in search of a method based upon the use of routine instruments and techniques which once were available for research only. The application to tissue studies of techniques from immunology, molecular biology, and genetics has allowed dynamic interpretations of biological phenomena with special regard to gene regulation and expression. That implies stepwise investigations, including light microscopy, immunohistochemistry, in situ hybridization, electron microscopy, molecular histopathology, protein crystallography, and gene sequencing, in order to progress from suggestive features detectable in routinely stained preparations to more characteristic, specific, and finally, pathognomonic features. Hematoxylin and Eosin (H&E)-stained preparations and appropriate immunohistochemical stains have enabled the recognition of phenotypic changes which may reflect genotypic alterations. That has been the case with hepatocytic inclusions detected in H&E-stained preparations, which appeared to correspond to secretory proteins that, due to genetic mutations, were retained within the rough endoplasmic reticulum (RER) and were deficient in plasma. The identification of this phenomenon affecting the molecules alpha-1-antitrypsin and fibrinogen has led to the discovery of a new field of cell organelle pathology, endoplasmic reticulum storage disease(s) (ERSD). Over fifty years, pathologists have wandered through a dark forest of complicated molecules with strange conformations, and by detailed observations in simple histopathological sections, accompanied by a growing background of molecular techniques and revelations, have been able to recognize and identify arrays of grotesque polypeptide arrangements.


Assuntos
Retículo Endoplasmático/genética , Imuno-Histoquímica , Doenças Metabólicas/patologia , alfa 1-Antitripsina/genética , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica/genética , Genótipo , Humanos , Doenças Metabólicas/classificação , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Mutação/genética
8.
Virchows Arch ; 478(2): 191-200, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32607686

RESUMO

Professional societies play a major role in medicine and science. The societies tend to be large with well-developed administrative structures. An additional model, however, is based on small groups of experts who meet regularly in an egalitarian model in order to discuss disease-specific scientific and medical problems. In order to illustrate the effectiveness of this model, the history and practices are examined of a long-standing successful example, the International Liver Pathology Group, better known as the Gnomes. The history shows that groups such as the Gnomes offer a number of important benefits not available in larger societies and nurturing such groups advances science and medicine in meaningful ways. The success of the Gnomes' approach provides a road map for future small scientific groups.


Assuntos
Hepatopatias/história , Fígado , Patologia Clínica/história , Sociedades Médicas/história , Sociedades Científicas/história , Comportamento Cooperativo , História do Século XX , História do Século XXI , Humanos , Fígado/patologia , Hepatopatias/patologia , Modelos Organizacionais , Patologia Clínica/organização & administração , Sociedades Médicas/organização & administração , Sociedades Científicas/organização & administração
9.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698516

RESUMO

Particular fibrinogen γ chain mutations occurring in the γ-module induce changes that hamper γ-γ dimerization and provoke intracellular aggregation of the mutant fibrinogen, defective export and plasma deficiency. The hepatic storage predisposes to the development of liver disease. This condition has been termed hereditary hypofibrinogenemia with hepatic storage (HHHS). So far, seven of such mutations in the fibrinogen γ chain have been detected. We are reporting on an additional mutation occurring in a 3.5-year-old Turkish child undergoing a needle liver biopsy because of the concomitance of transaminase elevation of unknown origin and low plasma fibrinogen level. The liver biopsy showed an intra-hepatocytic storage of fibrinogen. The molecular analysis of the three fibrinogen genes revealed a mutation (Fibrinogen Trabzon Thr371Ile) at exon 9 of the γ chain in the child and his father, while the mother and the brother were normal. Fibrinogen Trabzon represents a new fibrinogen γ chain mutation fulfilling the criteria for HHHS. Its occurrence in a Turkish child confirms that HHHS can present in early childhood and provides relevant epidemiological information on the worldwide distribution of the fibrinogen γ chain mutations causing this disease. By analyzing fibrinogen crystal structures and calculating the folding free energy change (ΔΔG) to infer how the variants can affect the conformation and function, we propose a mechanism for the intracellular aggregation of Fibrinogen Trabzon and other γ-module mutations causing HHHS.


Assuntos
Afibrinogenemia/genética , Fibrinogênio/genética , Fígado/patologia , Afibrinogenemia/patologia , Pré-Escolar , Feminino , Fibrinogênio/análise , Humanos , Masculino , Modelos Moleculares , Mutação , Linhagem , Conformação Proteica , Dobramento de Proteína , Termodinâmica
10.
Orphanet J Rare Dis ; 13(1): 79, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769092

RESUMO

BACKGROUND: Alpha-1-antitrypsin (AAT) deficiency (AATD) of Z, Mmalton, Siiyama type is associated with liver storage of the mutant proteins and liver disease. The Z variant can be diagnosed on isoelectric focusing (IEF) while Mmalton and Siiyama may be missed or misdiagnosed with this technique. Therefore, molecular analysis is mandatory for their characterization. In particular, that holds true for the Mmalton variant as on IEF profile it resembles the wild M2 subtype. METHODS: This is a retrospective analysis involving review of medical records and of liver biopsy specimens from a series of Mmalton, Z and Siiyama Alpha-1-antitrypsin deficiency patients. The review has been implemented by additional histological stains, electron microscopic observations and 3-D modeling studies of the sites of the mutations. RESULTS: Z, Mmalton and Siiyama liver specimen contained characteristic intrahepatocytic PAS-D globules. The globules differed in the three variants as only Mmalton cases showed dark basophilic precipitates within the AAT inclusions. The precipitates were visualized in haematoxylin-eosin (H.E.) stained preparations and corresponded to calcium precipitates as demonstrated by von Kossa staining. On immunohistochemistry, ZAAT inclusions were stained by polyclonal as well as monoclonal noncommercial anti-AAT antibody (AZT11), whilst Mmalton and Siiyama inclusion bodies remained negative with the monoclonal anti-Z antibody. 3-D protein analysis allowed to predict more severe misfolding of the Mmalton molecule as compared to Z and Siiyama that could trigger anomalous interaction with endoplasmic reticulum chaperon proteins, namely calcium binding proteins. CONCLUSIONS: Mmalton AAT inclusion bodies contain calcium precipitates inside them that allow the differential diagnosis with Siiyama and ZAAT inclusions in routine histological sections. The study has confirmed the specificity of the monoclonal AZT11 for the Z mutant. Thus, the combination of these two features is crucial for the distinction between the three variants and for predicting the genotype, whose confirmation would definitely require molecular analysis. Our study provides new data on the pathomorphogenesis of Mmalton inclusion bodies whose mineralization could play a central role in disease pathogenesis of Mmalton that is distinct from the Z and Siiyama variants. Calcium is known to be a major effector of cell death either via the increased intracellular concentration or the alteration of homeostasis.


Assuntos
Corpos de Inclusão/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Cálcio/metabolismo , Genótipo , Humanos , Fígado/metabolismo , Fígado/patologia , Registros Médicos , Mutação/genética , Estudos Retrospectivos , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética
11.
World J Hepatol ; 10(2): 231-245, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29527259

RESUMO

The rapidly growing field of functional, molecular and structural bio-imaging is providing an extraordinary new opportunity to overcome the limits of invasive liver biopsy and introduce a "digital biopsy" for in vivo study of liver pathophysiology. To foster the application of bio-imaging in clinical and translational research, there is a need to standardize the methods of both acquisition and the storage of the bio-images of the liver. It can be hoped that the combination of digital, liquid and histologic liver biopsies will provide an innovative synergistic tri-dimensional approach to identifying new aetiologies, diagnostic and prognostic biomarkers and therapeutic targets for the optimization of personalized therapy of liver diseases and liver cancer. A group of experts of different disciplines (Special Interest Group for Personalized Hepatology of the Italian Association for the Study of the Liver, Institute for Biostructures and Bio-imaging of the National Research Council and Bio-banking and Biomolecular Resources Research Infrastructure) discussed criteria, methods and guidelines for facilitating the requisite application of data collection. This manuscript provides a multi-Author review of the issue with special focus on fatty liver.

12.
Int J Mol Sci ; 18(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244742

RESUMO

p.R375W (Fibrinogen Aguadilla) is one out of seven identified mutations (Brescia, Aguadilla, Angers, Al du Pont, Pisa, Beograd, and Ankara) causing hepatic storage of the mutant fibrinogen γ. The Aguadilla mutation has been reported in children from the Caribbean, Europe, Japan, Saudi Arabia, Turkey, and China. All reported children presented with a variable degree of histologically proven chronic liver disease and low plasma fibrinogen levels. In addition, one Japanese and one Turkish child had concomitant hypo-APOB-lipoproteinemia of unknown origin. We report here on an additional child from Turkey with hypofibrinogenemia due to the Aguadilla mutation, massive hepatic storage of the mutant protein, and severe hypo-APOB-lipoproteinemia. The liver biopsy of the patient was studied by light microscopy, electron microscopy (EM), and immunohistochemistry. The investigation included the DNA sequencing of the three fibrinogen and APOB-lipoprotein regulatory genes and the analysis of the encoded protein structures. Six additional Fibrinogen Storage Disease (FSD) patients with either the Aguadilla, Ankara, or Brescia mutations were investigated with the same methodology. A molecular analysis revealed the fibrinogen gamma p.R375W mutation (Aguadilla) but no changes in the APOB and MTTP genes. APOB and MTTP genes showed no abnormalities in the other study cases. Light microscopy and EM studies of liver tissue samples from the child led to the demonstration of the simultaneous accumulation of both fibrinogen and APOB in the same inclusions. Interestingly enough, APOB-containing lipid droplets were entrapped within the fibrinogen inclusions in the hepatocytic Endoplasmic Reticulum (ER). Similar histological, immunohistochemical, EM, and molecular genetics findings were found in the other six FSD cases associated with the Aguadilla, as well as with the Ankara and Brescia mutations. The simultaneous retention of fibrinogen and APOB-lipoproteins in FSD can be detected in routinely stained histological sections. The analysis of protein structures unraveled the pathomorphogenesis of this unexpected phenomenon. Fibrinogen gamma chain mutations provoke conformational changes in the region of the globular domain involved in the "end-to-end" interaction, thus impairing the D-dimer formation. Each monomeric fibrinogen gamma chain is left with an abnormal exposure of hydrophobic patches that become available for interactions with APOB and lipids, causing their intracellular retention and impairment of export as a secondary unavoidable phenomenon.


Assuntos
Afibrinogenemia/genética , Apolipoproteína B-100/genética , Fibrinogênio/genética , Hipolipoproteinemias/genética , Hepatopatias/sangue , Afibrinogenemia/sangue , Afibrinogenemia/patologia , Apolipoproteína B-100/sangue , Pré-Escolar , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibrinogênio/química , Fibrinogênio/metabolismo , Hepatócitos/química , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hipolipoproteinemias/metabolismo , Hipolipoproteinemias/patologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Conformação Proteica , Relação Estrutura-Atividade
13.
Dig Liver Dis ; 49(11): 1247-1248, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28927708
17.
PLoS One ; 10(12): e0145021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26678486

RESUMO

Familial intrahepatic cholestases (FICs) are a heterogeneous group of autosomal recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. Three distinct forms are described: FIC1 and FIC2, associated with low/normal GGT level in serum, which are caused by impaired bile salt secretion due to defects in ATP8B1 encoding the FIC1 protein and defects in ABCB11 encoding bile salt export pump protein, respectively; FIC3, linked to high GGT level, involves impaired biliary phospholipid secretion due to defects in ABCB4, encoding multidrug resistance 3 protein. Different mutations in these genes may cause either a progressive familial intrahepatic cholestasis (PFIC) or a benign recurrent intrahepatic cholestasis (BRIC). For the purposes of the present study we genotyped 27 children with intrahepatic cholestasis, diagnosed on either a clinical or histological basis. Two BRIC, 23 PFIC and 2 BRIC/PFIC were identified. Thirty-four different mutations were found of which 11 were novel. One was a 2Mb deletion (5'UTR- exon 18) in ATP8B1. In another case microsatellite analysis of chromosome 2, including ABCB11, showed uniparental disomy. Two cases were compound heterozygous for BRIC/PFIC2 mutations. Our results highlight the importance of the pathogenic role of novel mutations in the three genes and unusual modes of their transmission.


Assuntos
Colestase Intra-Hepática/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Adolescente , Pré-Escolar , Colestase Intra-Hepática/patologia , Genótipo , Humanos , Lactente , Itália , Fígado/patologia , Mutação/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência/genética , Dissomia Uniparental/genética , Adulto Jovem
18.
Liver Int ; 35(12): 2501-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26176881

RESUMO

BACKGROUND AND AIMS: Fibrinogen gene mutations can rarely result in hepatic fibrinogen storage disease (HFSD). Herein, we report on the first Turkish family carrying the mutation p.Arg375Trp (fibrinogen Aguadilla) in the γ-chain of the fibrinogen (FGG) gene. METHODS: Clinical, laboratory and histopathological findings of the patient were documented. Molecular study of fibrinogen gene was performed in the patient and her family members. RESULTS: The proband was 5 years old girl presenting with advanced liver fibrosis of unknown origin. The child had very low plasma levels of fibrinogen and hypobetalipoproteinemia. Immunomorphologic and electron microscopic studies showed selective and exclusive accumulation of fibrinogen within the endoplasmic reticulum in liver biopsy of the patient. Patient, mother, two sisters and one brother carried p.Arg375Trp mutation (fibrinogen Aguadilla) in FGG gene. The patient was treated with ursodeoxycholic acid and carbamazepine. After 3 months, carbamazepine was suspended upon family decision and unresponsiveness of carbamazepine. CONCLUSIONS: HFSD is characterized by hypofibrinogenemia and accumulation of abnormal fibrinogen within hepatocytes. In addition, hypofibrinogenemia is associated with hypobetalipoproteinemia in Aguadilla mutation.


Assuntos
Afibrinogenemia , Carbamazepina/administração & dosagem , Fibrinogênio , Hipobetalipoproteinemias , Cirrose Hepática , Ácido Ursodesoxicólico/administração & dosagem , Afibrinogenemia/diagnóstico , Afibrinogenemia/etiologia , Afibrinogenemia/metabolismo , Pré-Escolar , Colagogos e Coleréticos/administração & dosagem , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Feminino , Fibrinogênio/análise , Fibrinogênio/genética , Humanos , Hipobetalipoproteinemias/complicações , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/fisiopatologia , Fígado/patologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/fisiopatologia , Mutação de Sentido Incorreto , Resultado do Tratamento
19.
Ital J Pediatr ; 41: 23, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25881033

RESUMO

Ataxia-Telangiectasia is a rare multisystem autosomal recessive disorder [OMIM 208900], caused by mutations in Ataxia-Telangiectasia Mutated gene. It is characterized by neurological, immunological and cutaneous involvement. Granulomas have been previously reported in Ataxia-Telangiectasia patients, even if acne rosacea has not been described.We report a case of a young Ataxia-Telangiectasia patient with a severe immunological and neurological involvement, who developed granulomatous skin lesions diagnosed by skin biopsy as acne rosacea. Considering the severe clinical picture and the lack of improvement to multiple topic and systemic therapies, treatment with Isotretinoin was started and the skin lesions disappeared after five months. However the therapy was stopped due to drug-hepatotoxicity.Systemic treatment with Isotretinoin should be carefully considered in patient with Ataxia-Telangiectasia for the treatment of multi-drug resistant acne rosacea, however its toxicity may limit long-term use and the risk/benefit ratio of the treatment should be evaluated.


Assuntos
Ataxia Telangiectasia/complicações , Fármacos Dermatológicos/uso terapêutico , Isotretinoína/uso terapêutico , Rosácea/tratamento farmacológico , Rosácea/etiologia , Adolescente , Ataxia Telangiectasia/sangue , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Fígado/efeitos dos fármacos , Rosácea/sangue , Rosácea/patologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...